
Tool to Support Computer Architecture Teaching
and Learning

Bruno Nova1, João C. Ferreira2, António Araújo2
1Faculdade de Engenharia da Universidade do Porto, Porto, Portugal

2INESC TEC and Faculdade de Engenharia da Universidade do Porto, Porto, Portugal

Abstract—Computer architecture is an important subject for
informatics and electrical engineering courses. However, students
display some difficulties in this subject, mainly due to the lack
of educational tools that are intuitive, versatile and graphical.
Existing tools are not adequate enough or are very specific.
In this paper, an educational MIPS simulator, DrMIPS, is
described. This tool simulates the execution of an assembly
program on the CPU and displays the datapath graphically.
Registers, data memory and assembled code are also displayed
and a “performance mode” is also provided. Both unicycle and
pipeline implementations are supported and the CPUs and their
instruction sets are configurable. The tool is currently available
for PCs and Android tablets, and is fairly intuitive and versatile
on both platforms.

Keywords—MIPS; Simulation; Computer Architecture teaching

I. INTRODUCTION

A. Motivation

Computer architecture is an important subject in the syl-
labus of Informatics and Electrical Engineering courses, such
as the MIEIC (Mestrado Integrado em Engenharia Informática
e Computação) and MIEEC (Mestrado Integrado em Engen-
haria Electrotécnica e de Computadores) of FEUP (Faculdade
de Engenharia da Universidade do Porto) . Here, students get
to know the basics of how processors and computers work,
learning topics like data representation on the computer, digital
circuits, conceptual composition of a Central Processing Unit
(CPU), assembly programming and processor performance.

However, many students exhibit difficulties understanding
various topics on this subject, such as pipelined processors and
calculating processor performance. Teachers and researchers
from FEUP have concluded that these difficulties exist mostly
due to the absence of tools on an integrated environment that
are geared towards education. More specifically, tools that
allow students to view the composition of a CPU’s datapath
graphically and consult detailed information about the data in
each functional block, data being transmitted on the buses and
control signals for each instruction on a set of instructions
executed by the CPU.

There are already many tools created to simulate the
operation of a CPU, and even some of them have graphical
interfaces to show the CPU datapath. However, most of them
are not very adequate for educational purposes, are difficult to
use and understand or are too specific for some problem and
not very versatile.

B. Objectives

The main objective of the work presented in this paper
was to create a tool to support computer architecture teaching
and learning. This educational tool is a simulator the MIPS
processor [1], which is a well-known processor in the computer
architecture academic community and also one of the most
used processors for teaching computer architecture courses
in universities [2]. This simulator was developed under the
MIEIC Master’s Dissertation at FEUP .

Its development was based on the following requirements:

• Allow the configuration and parametrization of the
CPU.

• Allow step-by-step simulation of MIPS assembly pro-
grams.

• Graphically display the datapath and the values of
inputs and outputs at each component.

• Simulate both unicycle and pipeline versions of the
CPU.

• Have a “performance mode” showing the latencies and
critical path of the CPU.

• Be versatile but intuitive and simple to use.

And it seeks to help students better understand:

• The composition and operation of a “simple” datapath.

• How instructions are encoded.

• The values of the signals in the datapath.

• Relevant blocks and signals for each instruction.

• Pipelining, hazards, forwarding and stalls.

• Performance measuring and critical path identifica-
tion.

The tool was developed mainly for personal computers,
but a version for Android devices, especially tablets, was also
created.

The rest of this paper is organized as follows. Section II
discusses the most relevant educational simulators. Section III
explains how the code of the tool was structured and how
the simulation logic was implemented. Section IV presents
and details the implementation of the user interface. Finally,
Section V draws conclusions and discusses possible future
work.

2013 1st International Conference of the Portuguese Society for Engineering Education (CISPEE)

978-1-4799-1221-6/13/$31.00 ©2013 IEEE

II. RELATED WORK

As mentioned before, several tools to simulate the opera-
tion of a CPU already exist, and some of them even display the
composition of the datapath visually. Most of them, however,
are either not very suitable to teach students of computer
architecture courses, are too difficult for a student to use or
have a very specific objective. This section presents the most
relevant educational simulators, as well as their strengths and
weaknesses.

QtSPIM (formerly SPIM) [3] is an open-source simulator,
written in C++ and Qt, that runs MIPS32 programs. It was
widely used, both for education and for the industry [4],
and supports a large number of MIPS instructions, including
syscalls and some floating point operations [5]. The tool is
good for debugging MIPS assembly programs and is reason-
ably intuitive but only simulates the unicycle version of the
CPU. It also doesn’t have a graphical view of the datapath
neither integrates a code editor.

The MIPS Assembler and Runtime Simulator (MARS)
simulator [4], developed in Java, is used in computer ar-
chitecture courses in many universities all over the world.
It simulates the execution of a MIPS assembly program,
showing the results in the registers and memory on the screen.
The simulation can be executed at once or step-by-step. The
supported instruction set includes floating-point operations
and various pseudo-instructions. MARS is also an Integrated
Development Environment (IDE) that includes an editor with
syntax highlighting and many help topics. The tool is very
good for simulating and debugging MIPS assembly programs
but, however, only simulates the unicycle version of the CPU
and doesn’t display the datapath visually. MARS supports
plugins. One on these is the MIPS X-Ray [6], which displays
the MIPS unicycle datapath graphically and the relevant wires
and components for the instructions being executed using
animations.

ProcSim [7] is a tool developed in Java that simulates the
MIPS R2000 unicycle MIPS CPU. Assembly code is executed
and displayed graphically as an animation in the datapath. The
tool includes several different datapaths and the user can create
more. It also provides a very simple code editor. ProcSim
provides a good visualization of the datapath. However, it
supports only a small set of MIPS instructions and only one
component can send messages at a time during the simulation,
displaying the animations sequentially by component, whereas
in a real processor the components work concurrently [8].
Furthermore, it doesn’t support pipelined datapaths.

MIPS-Datapath [9], developed in C++, is an open-source
software that simulates a set of MIPS instructions and displays
the execution in the datapath graphically. It can simulate not
only a unicycle datapath but also a pipelined one, with or
without data forwarding. The instructions are executed step-
by-step and the relevant wires for the selected instruction
are highlighted. A very simple code editor is also provided.
MIPS-Datapath allows a person to see how each instruction is
executed by the processor. However, it supports a very limited
instruction set, doesn’t support pipeline stalls and doesn’t allow
the datapath to be configured.

TABLE I. COMPARISON OF THE PRESENTED TOOLS

SPIM MARS PS MD WM EM
Open-source Yes Yes No Yes Yes Yes
Code editor No Yes Yes Yes Yes No
Syntax-highl. No Yes No No No No
Unicycle Yes Yes Yes Yes No No
Pipeline No No No Part. Yes Yes
Floating point Yes Yes No No No Yes
Syscalls Yes Yes No No No Yes
Edit data in exec Yes Yes No No No Yes
Visual datapath No No Yes Yes Part. Simple
Datapath conf. No No Yes No No No
Written in C++,Qt Java Java C++ ASP Java

WebMIPS [10] is an educational MIPS simulator that
can be executed from a Web browser and, thus, from any
system without installation. It was written in Active Server
Pages (ASP) and simulates a five-stage pipeline with hazard
detection, having been used in an introductory computer archi-
tecture course in Italy. The application provides a simple code
editor and the code is executed step-by-step, also showing a
graphical representation of the datapath It is a good educational
simulator but has some important shortcomings. Simulation of
the MIPS unicycle version is not possible and the datapath
visual representation is static, only displaying input/output data
on click.

EduMIPS64 [11] is an educational simulator that runs
MIPS64 programs. The tool was used in some undergraduate
courses to evaluate it and the results were positive, both in
terms of percentage of success [12] and in terms of apprecia-
tion from the students [13]. It was based on WinMIPS64 [14]
and WinDLX and was developed in Java. The tool simulates
a 5-stage MIPS64 CPU pipeline and includes floating point
operations, syscalls, hazard detection and supports a quite
reasonable number of instructions. The interface is intuitive,
but no code editor is provided, doesn’t support unicycle
simulation and doesn’t show a detailed datapath representation.

Table I summarizes the tools presented here. PS stands for
ProcSim, MD for MIPS-Datapath, WM for WebMIPS and EM
for EduMIPS64. Also, Part. means that the tool supports the
feature partially and Simple for the Visual datapath feature
means that the tool presents a very simple block diagram.
The table shows that it would be necessary to use more
than one tool to cover the most computer architecture topics,
which would be unintuitive and cumbersome for students and
teachers.

None of the presented tools has an Android version. As
such, a version of the developed simulator for Android tablets
is something innovative, considering how Android tablets are
becoming very popular [15], [16].

III. SIMULATOR IMPLEMENTATION

As described before, the main objective of this work was
to create an educational MIPS simulator. This simulator, called
DrMIPS, lets the user create or load an existing assembly
program and then simulate its execution on the 32 bit MIPS
CPU, step-by-step, while visualizing what happens inside the
processor. In each step, the user can see the contents of
the registers and data memory and, more importantly, the

2013 1st International Conference of the Portuguese Society for Engineering Education (CISPEE)

Fig. 1. Simulator Unified Modeling Language (UML) class diagram

composition and state of the unicycle or 5-stage pipeline
datapath. It also shows the values at each input and output
of each component, which wires are relevant for the execution
of the current instruction and, in the case of the pipelined
datapath, what instructions are in each stage. Besides seeing
how the data flows in the datapath, the user can also view the
latencies of the components and the critical path of the circuit
using the “performance mode”.

DrMIPS provides several different MIPS CPU datapaths,
based on [1], including the unicycle datapath with some
simplified variants and the pipelined datapath, with or without
hazard detection and resolution. These CPUs can be created
and configured by specifying in a file all the components and
their properties and the wires connecting them. But, besides
the datapaths, the instruction sets used by them can also
be configured and new ones can be created, by specifying
the properties of the different instruction types, instructions
and pseudo-instructions and what they do. Floating point
operations and syscalls are currently not supported.

The simulator was implemented not only for the Personal
Computer (PC) but also for Android devices, especially tablets.
For that reason, the simulator was developed in Java. This
makes porting code from the PC version to the Android
version and vice-versa easy, as Android also uses Java, and
makes the PC version runnable from most operating systems
without much trouble. The user interface also supports multiple
languages. At the moment only Portuguese and English are
available. As for the IDEs, Netbeans was chosen for the

development of the PC version, as it makes the creation of
user interfaces very easy, while for the Android version the
chosen one was Eclipse, as it is the one recommended by
Google.

To ease the development of both versions, the code was di-
vided in two parts: the simulation logic and the user interface.
With this division, only the user interface part is dependent
on the platform (PC or Android), while the simulation logic
part is exactly the same for both platforms. Figure 1 shows a
simplified UML class diagram of the simulator.

The code consists of the following Java packages:

• mips: contains the simulation logic.

• mips.components: inner package that defines all
the types of components.

• gui: contains the platform dependent user interface.

• util: contains some utility classes.

• exceptions: contains the exception classes.

The rest of this section discusses the implementation details
of the simulation logic, while section IV discusses the details
of both versions’ user interfaces.

A. CPU Definition

Each CPU is defined in a JSON file. JavaScript Object
Notation (JSON) is a file format that can be parsed easily in

2013 1st International Conference of the Portuguese Society for Engineering Education (CISPEE)

Java and in Android. It is also easy for humans to read/write
and creates smaller files than other formats like eXtensible
Markup Language (XML). A CPU file lists the components
and their properties, the wires connecting the components, the
“friendly” names of each register and the used instruction set
(described in the next sub-section).

In the code, as seen in Figure 1, the CPU class is the central
part of the simulator. It grants access to all its components, the
instruction set and the assembler and is the “interface” that the
user interface uses to assemble programs, execute cycles, get
values and latencies, etc. It is also where the CPU JSON files
are loaded and parsed.

A CPU is comprised of several components. The
Component class is the base class for all the components.
Each component must extend from this class, set the required
properties and implement execute(), where its behaviour is
defined, using the values of the inputs to set the correct values
of the outputs. And, of course, the component has inputs and
outputs, defined by Input and Output respectively. Each
output can be connected to an input, which represents a wire.
The CPU can, therefore, be represented as a graph.

Some of the components are synchronous, like the pro-
gram counter and register bank. These components have an
internal state that can be changed only during a clock tran-
sition. In terms of code, these components implement the
IsSynchronous interface, and must then implement the
executeSynchronous() method, where the synchronous
behaviour that changes the component’s internal state is de-
fined. Furthermore, to allow the user to return to previous states
during execution (i.e. back step), the internal states are saved
in each clock cycle in a stack and some additional methods to
save and restore these states were also implemented.

When executing code, each clock cycle starts by executing
the synchronous behaviour of the synchronous components,
and then proceeds to execute the “normal” behaviour of the
components, starting by the synchronous ones. During this
process, the outputs of the components usually have their val-
ues changed. When this happens, the new value is propagated
to the connected input, which then executes the “normal”
behaviour of the input’s component and, possibly, continues
the data propagation. This only occurs when the new value
is changed (i.e. the new value is different from the previous
one), avoiding infinite loops that would have resulted from this
solution. This also means that the synchronous behaviour of
the components cannot cause any data propagation.

As for accumulated latencies and critical path, they are
calculated using propagation too, but are only calculated
when the CPU is loaded or when a latency is changed by
the user. Each component has its individual latency and an
accumulated latency. Each input also stores the accumulated
latency. The calculation of the accumulated latencies starts
on the synchronous components and is propagated up to
inputs that are only used by synchronous behaviours (like the
WriteData input of the register bank). The critical path is,
then, calculated backwards from the input or inputs with the
highest accumulated latency. It is worth noting that a CPU can
have multiple critical paths.

Regarding the pipeline version of the MIPS CPU, it must
have exactly five stages and, thus, four pipeline registers that
separate them. These registers, and the program counter, are
used to determine what instructions are in each stage of the
pipeline by checking their Write and Flush control signals.
This is necessary due to the hazards that can occur. Both an
hazard detection unit and a forwarding unit were implemented,
and their behaviours were based on [1].

In each clock cycle, each wire can be marked as “irrele-
vant” (gray on the user interface) or relevant. This decision is
made based only on the values in the wires and components,
and not on the instruction, as it would be fairly difficult
to determine the relevant wires and components for each
instruction when the CPU and even the instruction set is very
generic and configurable. That said, the conditions to mark a
wire as irrelevant are very simple: the wire carries one bit with
the value zero, a stall is occurring, the wire is not selected by
a multiplexer, etc.

B. Instruction Set Definition

Like the CPU, each instruction set is defined in a JSON
file. An instruction set file lists the instruction types, the
instructions, the pseudo-instructions and their properties and
also specify how the control unit, the Arithmetic and Logic
Unit (ALU) and ALU control work.

As shown in Figure 1, the main class that defines the
instruction set is InstructionSet and is accessible from
the CPU. This class loads and parses the instruction set from
the file specified in the CPU file, and grants access to all of the
instruction types, instructions, pseudo-instructions and control
definitions.

An instruction set has several different instructions. In the
MIPS case, which is a Reduced Instruction Set Computer
(RISC) architecture, all of the instructions have the same
size. Each instruction belongs to a type and, for the MIPS,
that means one of R, I or J. The 32 bits that comprise the
instruction code are split in fields. The fields are different for
each type, except the opcode field, which is always the first
field and has always the same size. InstructionType is
the class that represents this information.

The most complete implemented datapath supports the
following instructions: nop, add, sub, and, or, slt, addi,
lw, sw, beq, j, nor, xor, mult, div, mfhi and mflo.
This datapath also includes the following pseudo-instructions:
li, la, move, subi, sgt, neg, bge, ble, b, not, mul
and rem.

The instructions and pseudo-instructions are represented by
the Instruction and PseudoInstruction classes re-
spectively. Each instruction belongs to a type, has a mnemonic
and defines the number and type of arguments, the values of
each field (that may come from an argument) and a symbolic
description that can be viewed by the user. Each pseudo-
instruction has a mnemonic and defines the number and type of
arguments, the instructions it is converted to when assembling
and a symbolic description. In the developed simulator, each
mnemonic can only belong to one instruction or pseudo-
instruction.

2013 1st International Conference of the Portuguese Society for Engineering Education (CISPEE)

An instruction set also has to define what the instructions
do. That is defined in the Control and ControlALU
classes. The Control class controls the behaviour of the
control unit, and contains the information necessary to produce
the right control signals for each instruction opcode. The
ControlALU class controls the behaviour of both the ALU
and ALU control components, and contains the information
necessary for the ALU control to produce the right outputs
for each ALUOp and instruction func field combination, and
also the correspondence between each possible ALU control
input and operation.

C. The Assembler

The assembler is represented by the Assembler class,
and is accessible from the CPU, as visible in Figure 1.
When the code is to be assembled, the user interface uses
the CPU’s Assembler to parse the code, consulting the
CPU’s InstructionSet and converting the instructions
and pseudo-instructions in the text segment to assembled
instructions, represented by the AssembledInstruction
class, which are then loaded into the CPU’s instruction mem-
ory. The assembling process also involves parsing the data
segment in the code to initialize the CPU’s data memory with
the specified values.

The code entered by the user can have errors, which must
be shown to the user. When an error is found in an instruction,
the assembler throws an exception. However, instead of stop-
ping the assembler here, the exception is caught and added to
a list of exceptions. The assembler then resumes in the next
instruction. With this technique, all the errors present in the
code can be shown to the user. Only one error can be displayed
per line, though.

The implementation of the assembler is fairly simple, and
the assembling process is done in two steps:

1) The assembler parses the data segment and loads the
values to the data memory, while also keeping track
of labels and converting the pseudo-instructions into
instructions in the text segment.

2) All instructions are converted into the correspond-
ing instances of AssembledInstruction and
assembled to machine code, being then loaded into
the CPU’s instruction memory.

In terms of assembler directives, four directives are cur-
rently supported:

• .data: starts the data segment, where the data mem-
ory is initialized

• .text: starts the text segment, where the code is
defined

• .word: declares one or more values to be stored in
the data memory as 32 bits words

• .space: reserves some bytes in the data memory

IV. INTERFACE IMPLEMENTATION

The simulator was developed for both computers and
Android devices, especially tablets. This section discusses

some details about the implementation of their user interfaces.
Looking at the UML class diagram in Figure 1, the user
interface code is defined in the gui package, and is the only
package that differs between the PC and Android versions.

A. PC Version

The PC version is the most complete. By default, the
interface is shown with a light theme and with the contents
split in five tabs, as shown in Figure 2. Two tabs can be viewed
at once, as the window is split in two sides horizontally, and
the user can move any tab from one side to the other by
right clicking on the tab title and selecting the only option
from the pop-up menu. However, the user can choose to use
a dark theme and can also choose to use internal windows
instead of tabs, as shown in Figure 3. Using internal windows
is useful in large screens, and the windows’ positions and
sizes are remembered on exit. The interface supports multiple
languages, Portuguese and English at this stage, and they can
be changed in the menus.

The different tabs or windows are:

• Code: contains the code editor.

• Assembled: displays the assembled instructions and
resulting machine code.

• Datapath: displays the datapath and the instruction(s)
being executed.

• Registers: lists the registers and their values.

• Data memory: shows the values in the data memory.

DrMIPS provides a code editor with syntax-highlighting,
auto-complete, search/replace, line numbers, undo and redo
thanks to the RSyntaxtTextArea component and AutoComplete
library [17]. The syntax-highlighting and auto-complete rules
are not “static” and depend on the loaded CPU datapath. The
auto-complete provided is mostly for help and is activated by
<Ctrl>+<Space>. All of the errors present in the code are
indicated close to the line numbers when the user assembles
the code.

The assembled code table displays the resulting machine
code and highlights the instruction or instructions being ex-
ecuted by the CPU. Hovering the mouse cursor over each
instruction also displays the type of the instruction and the
values of the instruction’s fields, as shown in Figure 3. The
registers and data memory tables display their respective values
but also highlight the registers or addresses being accessed.
Registers and values in the data memory can be changed by
double-clicking them in the table. All these values can be
displayed in decimal, binary and hexadecimal formats.

The datapath is probably the most important part of the
simulator. The components are all displayed as rectangles and
represented internally as JPanels. The component’s name,
description, input and output values, or latency are shown as a
tooltip when the user hovers the mouse cursor over it, as shown
in Figure 2. The wires are drawn on the background of the
datapath and have different colors when they are irrelevant or
belong to the control path. Some of the components’ inputs and
outputs display a small permanent tip with the current value of

2013 1st International Conference of the Portuguese Society for Engineering Education (CISPEE)

Fig. 2. DrMIPS for the PC with the default options, with the tooltip of a component being shown

Fig. 3. DrMIPS for the PC using internal windows and dark theme while in “performance mode”

2013 1st International Conference of the Portuguese Society for Engineering Education (CISPEE)

the input or output. That data tip is always placed below the
input or output’s point of entry or exit, and is represented by
a JLabel. The datapath is a JLayeredPane to allow the
data tips to be always on top. The user can hide the control
path, the data tips and the arrows in the wires.

It was decided to make the graphical datapath as small as
possible, but still readable. This way, a larger portion of the
datapath, or even the whole datapath, will be visible. Because
of this some informations, like the names of the inputs and
outputs, must be omitted.

The datapath can also be displayed in a “performance
mode”. In this mode, the wires that belong to the datapath are
shown in red, the data tips are hidden and the components’
tooltips display their latencies and accumulated latencies in-
stead of values. Also, double-clicking a component while in
this mode allows the user to edit the latency of the component.
The new value is not stored in the CPU file.

The instruction or instructions currently being executed are
displayed above the datapath in a table with just one line and
no header. Using a table like this means that the columns
will probably not be aligned with the corresponding pipeline
registers in the datapath, but it also means that they are always
visible even if the whole datapath doesn’t fit in the screen, as
can be seen in Figure 2.

B. Android Version

The Android version is very similar to the PC version.
Like in the PC version, the application uses a light theme by
default, but a dark theme is also available. Figure 4 shows the
application running on a tablet with Android 4.0.3 using the
light theme, while Figure 5 shows it running on a smartphone
with Android 4.1.2 using the dark theme.

The application contains only one activity and its contents
are split in tabs using a TabHost. The contents of the
different tabs are defined in different layout files which are
included in the activity layout, without using the new Android
fragments feature. The application supports screen rotations
without losing its state. Currently, the application can be shown
in Portuguese and English.

The code editor of this version is a simple EditText.
Also, due to the fact that MIPS assembly programs rely heavily
on the dollar sign ($) to reference registers, using the default
on-screen keyboard may be very annoying, as the dollar sign
is usually not on its first page.

The assembled code, registers and data memory tables are
similar to the ones in the PC version. However, to view an
instruction “tooltip” in the assembled code, the user must press
on the instruction instead of hovering the “cursor” over it,
as mobile devices don’t have a cursor nor a mouse. Also,
to change a register or a value in the data memory, the user
must long-press it in the table instead of double-clicking. This

Fig. 4. DrMIPS for the Android using the light version on a tablet

Fig. 5. DrMIPS for the Android using the dark version on a smartphone,
displaying the details of a component while in “performance mode”

behaviour is used in other parts of the interface.

The datapath is displayed in the same way as in the PC
version. It uses a RelativeLayout to display the compo-
nents in the specified positions and with the specified sizes,
all measured using density-independent pixels, which is a unit
that makes the graphical components have approximately the
same real size in all devices. Each component is a TextView
and its name, description, input and output values, or latency
can be displayed by pressing the component, as shown if
Figure 5. Long-pressing it while in performance mode lets
the user change the latency. The data tips are also displayed
in the same way as in the PC version and, because they are the
last user interface components added, they are always shown
on top.

The CPU, instruction set and code files are stored in the
application’s data directory, preferably in the external memory.
This memory, usually mounted in /mnt/sdcard, in many
devices is actually a partition in the device’s internal memory
and not the external memory card. But, in case it is the external
memory card and it is not available, the application stores
the files on the application’s private directory in the device’s
internal memory. Storing the files in the external memory
allows the user to access them using another application like
a file explorer. To know the path to the loaded CPU or code
file, the user can press on the file’s name in the user interface.

V. CONCLUSION AND FUTURE WORK

A tool to aid computer architecture students and teachers
was presented. This tool, a MIPS simulator, is fairly versatile,
intuitive, configurable and aggregates several different features

that are found scattered through similar tools. It supports
both unicycle and pipeline versions of the CPU, displays the
datapath graphically and has a “performance mode”. This tool
is also available for Android, while none of the similar tools
has an Android version. However, due to lack of time, some
intended features where not implemented, like timing diagrams
and a graphical CPU editor, besides some additional polishing.
But the end result is very positive.

ACKNOWLEDGEMENTS

The author would like to thank the DEI of FEUP and
professors António Araújo and João Canas Ferreira from the
DEEC for the given orientation and advices, and also for
proposing this work .

REFERENCES

[1] D. A. Patterson and J. L. Hennessy, Computer Organization and Design
- The Hardware/Software Interface, 3rd ed. Morgan Kaufmann, 2005.

[2] J. L. S. C. Pereira, “Educational package based on the MIPS architec-
ture for FPGA platforms,” Master Thesis, Faculdade de Engenharia
da Universidade do Porto, June 2009, accessed on June 6, 2013.
http://repositorio-aberto.up.pt/bitstream/10216/59975/1/000135086.pdf.

[3] J. Larus, “SPIM: A MIPS32 Simulator,” accessed on June 6, 2013.
http://spimsimulator.sourceforge.net.

[4] D. K. Vollmar and D. P. Sanderson, “MARS: An Education-Oriented
MIPS Assembly Language Simulator,” March 2006, accessed on June 6,
2013. http://www.cs.missouristate.edu/∼vollmar/MARS/fp288-vollmar.
pdf.

[5] J. Larus, “SPIM S20: A MIPS R2000 Simulator,” Computer Sciences
Department, University of Wisconsin, Tech. Rep., 1990, accessed on
June 6, 2013. http://phoenix.goucher.edu/∼kelliher/f2005/cs220/spim.
pdf.

[6] G. C. R. Sales, M. R. D. Araújo, F. L. C. Pádua, and F. L. C.
Júnior, “MIPS X-Ray: A Plug-in to MARS Simulator for Datapath
Visualization,” 2010.

[7] J. Garton, “ProcessorSim – A Visual MIPS R2000 Processor Simulator,”
2005, accessed on June 6, 2013. http://jamesgart.com/procsim.

[8] H. Sarjoughian, Y. Chen, and K. Burger, “A Component-based Visual
Simulator for MIPS32 Processors,” 38th Frontiers in Education Con-
ference, pp. F3B–9 – F3B–14, October 2008.

[9] A. Gascoyne-Cecil, “MIPS-Datapath,” accessed on June 6, 2013. http:
//mi.eng.cam.ac.uk/∼ahg/MIPS-Datapath.

[10] I. Branovic, R. Giorgi, and E. Martinelli, “WebMIPS: A New Web-
Based MIPS Simulation Environment for Computer Architecture Edu-
cation,” Workshop on Computer Architecture Education, 31st Interna-
tional Symposium on Computer Architecture, 2004, accessed on June 6,
2013. http://www4.ncsu.edu/∼efg/wcae/2004/submissions/giorgi.pdf.

[11] T. E. Team, “EduMIPS64,” accessed on June 6, 2013. http://www.
edumips.org.

[12] D. Patti, A. Spadaccini, M. Palesi, F. Fazzino, and V. Catania, “Sup-
porting Undergraduate Computer Architecture Students Using a Visual
MIPS64 CPU Simulator,” IEEE Transactions on Education, vol. 55,
no. 3, pp. 406 – 411, August 2012, accessed on June 6, 2013.

[13] “EduMIPS64 Students Questionnaire,” accessed on June 6, 2013. http:
//www.diit.unict.it/users/spadaccini/edumips64-survey.html.

[14] M. Scott, “WinMIPS64,” April 2012, accessed on June 6, 2013. http:
//indigo.ie/∼mscott.

[15] M. Butler, “Android: Changing the Mobile Landscape,” IEEE Pervasive
Computing, vol. 10, no. 1, pp. 4 – 7, January-March 2011.

[16] R. Shim, “Tablets Impact the Notebook Market: Enter the Ultrabook,”
Information Display, vol. 28, no. 2 and 3, pp. 12 – 14, Febru-
ary/March 2012, accessed on June 6, 2013. http://sid.calcey.net/Portals/
InformationDisplay/IssuePDF/03 2012.pdf#page=14.

[17] Fifesoft, “RSyntaxTextArea — Fifesoft,” 2013, accessed on May 27,
2013. http://fifesoft.com/rsyntaxtextarea.

http://repositorio-aberto.up.pt/bitstream/10216/59975/1/000135086.pdf
http://spimsimulator.sourceforge.net
http://www.cs.missouristate.edu/~vollmar/MARS/fp288-vollmar.pdf
http://www.cs.missouristate.edu/~vollmar/MARS/fp288-vollmar.pdf
http://phoenix.goucher.edu/~kelliher/f2005/cs220/spim.pdf
http://phoenix.goucher.edu/~kelliher/f2005/cs220/spim.pdf
http://jamesgart.com/procsim
http://mi.eng.cam.ac.uk/~ahg/MIPS-Datapath
http://mi.eng.cam.ac.uk/~ahg/MIPS-Datapath
http://www4.ncsu.edu/~efg/wcae/2004/submissions/giorgi.pdf
http://www.edumips.org
http://www.edumips.org
http://www.diit.unict.it/users/spadaccini/edumips64-survey.html
http://www.diit.unict.it/users/spadaccini/edumips64-survey.html
http://indigo.ie/~mscott
http://indigo.ie/~mscott
http://sid.calcey.net/Portals/InformationDisplay/IssuePDF/03_2012.pdf#page=14
http://sid.calcey.net/Portals/InformationDisplay/IssuePDF/03_2012.pdf#page=14
http://fifesoft.com/rsyntaxtextarea

	Introduction
	Motivation
	Objectives

	Related Work
	Simulator implementation
	CPU Definition
	Instruction Set Definition
	The Assembler

	Interface Implementation
	PC Version
	Android Version

	Conclusion and Future Work
	References

